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Abstract — Preserving the human factor while mitigating 

risks associated with confined spaces, cutting down on the 

overall time of the inspection process, and optimizing regular 

equipment maintenance costs are the three most important 

factors for the success of the inspection process in oil and gas 

fields. Due to cost concerns and to ensure safety, the pressure 

vessel inspection process requires alternatives to traditional 

labor-intensive visual inspection techniques. This paper 

proposes a deep learning (DL) model as an intelligent and 

accurate tool for visual inspection of pressure vessels using a 

training dataset of 5000 real internal shell surface on-site 

images from the Abu Madi gas field of the PETROBEL 

Company, Egypt. A six-year-experienced Non-Destructive 

Testing (NDT) inspector was leveraged for manual labeling of 

the dataset. The present detection model utilizes You Only 

Look Once (YOLO) v8 model from v5, v8 and v10 models to 

diagnose whether the pressure vessel's inner surfaces of shell 

is in good condition or includes damage. The developed 

YOLO v8 multi-class identification model successfully detects 

the state of the pressure vessel's inner shell; good condition, 

or in the existence of damage, corrosion, pitting corrosion, 

mechanical damage, or brittle fracture. After training the 

model on the used on-site dataset images, the test process 

reveals a detection accuracy up to 93.3%. During the test 

process, if a single image contains good and damaged parts or 

two different types of damage, the model can differentiate 

between those cases. Applying this model in the inspection 

process will reduce costs by excluding the need for scaffolding 

and qualified inspectors and reducing the number of injuries 

and fatalities recorded due to confined spaces. 

 

Keywords: pressure vessel; internal visual inspection; damage 

mechanisms; defect detection; YOLO v8 model. 

 

I. INTRODUCTION 

In the oil and gas industry, pressure vessels play a vital role 

in various operations, including storage, separation, and 

filtration processes, where pressure vessel considered as a 

container that can sustain internal or external pressure. 

Pressure vessels are built in compliance with American 

Society of Mechanical Engineers Boiler & Pressure Vessel 

Code (ASME BPVC). These standards usually restrict 

design basis to an exterior or internal design pressure of no 

less than (103 kPa) [1]. The safety of these vessels is crucial 

since the stored substances are highly flammable. Any 

failure of these pressure vessels might have disastrous 

effects on both the environment and public safety. Thus, it 

is essential to visually monitor these assets on a frequent 

basis [2]. The structure of vessels can be impacted by 

corrosion in many different ways [3]. General corrosion, 

which can develop uniformly on uncoated surfaces and 

appear as friable, non-protective rust. Pitting is a localized 

process that typically begins due to localized casing 

breaking, drifts by corrosive attack into deep wells of 

relatively small diameter, and can ultimately result in 

penetration into the shell at sporadic, isolated spots. Cracks 

when early detected helps avoid structure collapse or 

cracking and the resulting potentially catastrophic effects on 

people, the environment and the economy. These defects are 

indicators of the condition of the metal surface. The 

consequences of its failure extend beyond environmental 

and safety concerns, highlighting the significance of regular 

visual inspections to ensure operating integrity [4]. 

Considering Marcus Oil Explosion (2004) [5], a pressure 

vessel explosion at a chemical factory in Houston caused 

three fatalities as well as significant damage to surrounding 

structures because of incorrect modifications and poor 

welding. Moreover for Buncefield Explosion (2005) [5], 

over 2,000 citizens had to be evacuated after an explosion at 

a gasoline depot in the United Kingdom left 43 people 

injured. The mishandling of pressure vessels was a 

contributing factor in that tragedy. The explosion at 

Algeria's largest refinery (Skikda 2004) [5], left 23 people 

dead and highlighted the disastrous possibility of pressure 

vessel failures in the oil and gas industry. By identifying and 

monitoring the indications that may result in damage, the 

inspection process is essential to assess the state of a vessel. 

Proactive risk management becomes better by the 

information gathered from these inspections, which helps 

with future repair, replacement, and inspection strategy 

decision. Regular inspections play a vital role in identifying 

potential hazards early on, which is essential for preventing 

significant process safety incidents such as fires, exposure 

to dangerous matrials, and environmental damage [6]. 

Additionally, visual inspection is regarded as a basic and 

reliable inspection technique [7]. When using the traditional 

method, skilled human engineers usually visually check 

these assets that are situated in difficult or crowded areas. It 

is therefore becoming essential to relieve human engineers 

from risky, falling object, and high-pressure system 

explosion tasks even in the absence of appropriate safety 

protections [8]. 

This study suggests using three YOLO models, v5, v8, and 

v10 and Examine the performance of each model to select 



 

 

the most appropriate model for this type of dataset to 

determine whether the pressure vessel's internal shell is in 

good condition or includes any damage, which is classified 

as corrosion, pitting corrosion, mechanical damage, or 

brittle fracture. YOLO v8 achieves higher mean average 

precision (mAP) in comparison to versions like YOLO v5 

and YOLO v10. YOLO v8 represents a substantial 

advancement in real-time object detection, focusing on 

efficiency and accuracy. The improvements made to it 

enable its use in numerous applications, especially in 

situations where rapid performance is essential. 

 

II. LITERATURE REVIEW 

The discussion of this literature included a number of 

vision-based damage detection techniques. Pascual et al. 

[9] demonstrated a system for detecting coating 

breakdown/corrosion based on a three-layer feed forward 

artificial neural network with a micro-aerial vehicle. 

Maglietta et al. [10] described three processing levels of an 

innovative intelligent system for autonomous visual 

assessment of containers. Their classification of sub-images 

as rust or non-rust was proposed using a new tool based on 

an ensemble of classifiers. Liao and Lee [11] employed an 

algorithm incorporating three distinct methodologies as a 

substitute for automatically processing photographs. Their 

images were grouped into subsets based on the hue 

percentage and coefficient of variation of grey levels. 

Margarita et al. [12] employed the use of digital 

photographs of metals to present an image-processing 

approach for the detection of rust zones. Ivanoskii et al. 

[13] used machine learning techniques to analyze images to 

detect steel flaws, which could significantly expedite the 

process of identifying faults and enhance its efficiency. 

Zhitong et al. [14] developed a metal surface corrosion 

identification model framework on the YOLO v5s. Zhao et 

al. [15] proposed the RDD-YOLO model, based on YOLO 

v5 and incorporated “Res2Net” blocks to form a DFPN in 

the neck to enhance the receptive field and extract features 

of different scales. 

Choi and Kim [16], employed digital image processing to 

introduce a novel concept for analyzing corrosion surface 

damage rather than relying on electrochemical techniques. 

Their study examined corrosion events through the 

evaluation of morphological surface defects using digital 

values. Cha et al. [17] proposed a faster R-CNN-based 

structural visual examination method, allowing the quasi-

real-time identification of multiple types of defects. Atha 

and Jahanshahi [18] presented various CNN-based 

methods for evaluating corrosion on metallic surfaces. Their 

findings indicated that CNNs outperform vision-based 

corrosion recognition methods that based on texture and 

color analysis using a fundamental multilayered perceptron 

network. Forkan et al. [19] created a research community 

working on using AI picture analysis to identify corrosion, 

with convolutional neural networks CNNs serving as the 

foundation for the innovative deep learning approach of the 

CorrDetector suite. Zhang et al. [20] proposed a surface 

flaw detection methodology for wind turbines utilizing 

portable YOLO v5s. Bastian et al. [21] identified corrosion 

in pipelines using a computer vision-based method. The 

pipelines proposed to be carrying gas, oil, and water. They 

built convolutional a uniquely neural network and used to 

categorize pipeline photographs based on the degree of 

corrosion in each one. Jiang et al. [22] offered a pipeline 

flange visual inspection method based on the YOLO v3 

algorithm. To mitigate the impact of image capture scale 

variations on detection accuracy, the original network's 

multi-scale target detection was modified to incorporate five 

distinct scale types. 

The main focus of this article is to present an approach for 

the immediate detection of structural defects in internal 

pressure vessels in oil and gas plants by emphasizing several 

types of visible damage. The procedure involves 

distinguishing internal shell surfaces that are damaged from 

those that are good. Thus, detecting corrosion, pitting 

corrosion, mechanical damage, brittle fractures, cracks, and 

other interior damage mechanisms affecting pressure 

vessels are given special attention in this work. 

 

III. METHODOLOGY 

A. Dataset Collection and Annotation 

The lack of publicly available datasets is one of the major 

challenges in using object detection to identify internal 

damage in pressure vessels containing oil and gas. To 

overcome this limitation, this study created a new dataset 

specifically designed to identify different internal damage 

mechanisms in pressure vessels. The detection model's 

training dataset included 2000 real on-site images of the 

interior pressure vessel shell surface from PETROBEL's 

Abu Madi Field; 40% in good form, 35% corrosion, 20% 

brittle fracture, 3% mechanical damage, and 2% pitting 

corrosion, as shown in Fig.1. 

 

 
Non-Destructive Testing (NDT) inspector has six years of 

expertise in oil and gas plant inspections annotated the 

dataset used in this investigation. Using the free online 

annotation tool Roboflow, each image in the dataset is 

manually labeled. A variation of image expansion methods 

were applied in order to increase the model's flexibility in 

detecting internal damages of pressure vessels and increase 

the dataset. These methods include saturation modification, 

rotation +/-90, vertical flipping, and static cropping. 

To support and generalize the model's ability in real-world 

scenarios, several data augmentation techniques were 

implemented. These techniques not only enhanced the 

(a) (b) 

(e) 
(c) 

Fig.1. (a) Good, (b) Corrosion, (c) Pitting Corrosion, (d) 

Mechanical Damage, (e) Brittle Fracture 

(d) 



 

 

dataset by adding 3000 additional images, Table I, but they 

also successfully reduced the likelihood of over-fitting, 

which in turn increased the model's ability. The dataset was 

split into two groups after the augmentation process: 80% 

was utilized for training, and 20% was used for validation. 

150 distinct photos from the original dataset (images the 

model had never seen before) were utilized to test the 

model's performance in real-world testing. 

 
TABLE I. COMPARISON OF THE DATASET BEFORE AND AFTER 

AUGMENTATION. 

 

B. YOLO Architecture 

Joseph Redmon et al. [23] introduced the "You Only Look 

Once" method for the first time in 2016. Its name comes 

from its unique method of identifying things and their 

placements by looking at a whole image only once. YOLO 

addresses object detection as a regression problem, 

compared with conventional solutions that modify 

classifiers for a two-stage detection process, resulting in 

complicated networks requiring separate training for each 

component.  In the year 2020, Glenn Jocher introduced 

YOLO v5, shortly following the release of YOLO v4 [24]. 

Because it strikes a compromise between speed and 

accuracy, YOLO v5 is becoming increasingly popular. 

YOLO v5 includes three features. Architecture is the 

updated CSPNet backbone used by YOLO v5 to improve 

feature extraction while maintaining efficiency. 

Performance is suitable for real-time applications because 

it strikes a fair balance between speed and accuracy. Using 

a typical GPU, YOLO v5 can process images at around 140 

frames per second. Use cases as it is frequently used in a 

range of applications, including industrial automation, 

autonomous driving, and surveillance 

YOLO v8 improved upon YOLO v5 in several of ways, 

with an especially strong focus on speed and precision. It 

consists of three notable characteristics. Improved 

Architecture as YOLO v8 has a revamped head and 

backbone that improves the model's performance and 

capacity to recognize tiny objects. Performance Metrics 

when compared to YOLO v5, it exhibits better mAP results 

on benchmark datasets, especially in complex situations. 

Speed with comparable hardware configurations, YOLO v8 

is intended to be quicker than YOLO v5, reaching about 200 

FPS. YOLO v10 is a new real-time end-to-end object 

detector. Multiple evaluations reveal that YOLO v10 

exceeds other cutting-edge detectors in terms of 

performance and latency, thus proving its superiority. 

YOLO v10, developed by researchers at Tsinghua 

University and published in May 2024 [25], represents a 

significant advancement in the field of real-time object 

detection. A crucial problem in object detection is striking a 

balance between computational efficiency and accuracy, 

which this innovative architecture attempts to solve. YOLO 

v10 achieves this by combining a variety of model 

variations, architectural changes, and creative training 

techniques. YOLO v10 uses a mix of training techniques 

and architectural advancements to address accuracy and 

efficiency. The fundamental idea is "Consistent Dual 

Assignments" in training, which removes the requirement 

for computationally costly non-maximum suppression 

(NMS) during inference and lets the model learn from rich 

supervision. 

 

C. Damage Identification Model (DIM) 

Detecting and accurately locating objects within image or 

video data is made possible by object detection, which is a 

crucial component of computer vision. According to Zhao 

et al. [26], there are two essential steps in this process: 

classification, which entails giving each object a unique 

class name, and localization, which involves demonstrating 

one or more things within the data that was collected. The 

internal damage mechanisms of pressure vessels can be 

identified utilizing object detection techniques. This AI-

driven model can detect the many forms of damage, such as 

pitting corrosion, brittle fracture, mechanical damage, and 

corrosion, on the interior shell of the pressure vessel. It can 

also classify the vessel as being in good condition. Three 

models for object detection YOLO v5, v8, and v10 were 

trained in this study utilizing pre-processed 640x640 pixel 

images. The training procedure used an IoU threshold of 

0.5, a batch size of 16, and 100 epochs While examining 

images, YOLO divides each image into a 16 x 16 grid. 

Within each sector, the model can detect the class if it 

exceeds 50%. During the testing process, if a single image 

contains both good and damaged parts or two different types 

of damage, the model can distinguish between these cases. 

Google Colab supplied the computing resources for quicker 

training. 

 

D. Model Evaluation Indicators 

The following metrics are used in this work to evaluate the 

trained YOLO models object identification abilities: 

precision, recall, mean average precision (mAP), training 

accuracy and confusion matrix. The best model 

performance for the task can be chosen more easily 

according to this comprehensive assessment technique, 

which provides a more precise understanding of the model's 

detection ability.  

Fig.2. shows Precision Confidence comparison between the 

three models Yolo v5, v8, and v10. Where precision is a 

metric that determines the proportion of accurately detected 

positive occurrences (true positives) out of the total 

instances projected as positive (true positives and false 

positives), indicating the accuracy of positive predictions. 

Precision, equation (1), measures how accurate the positive 

predictions are: 

                    Precision=  
��

��+��
  (1) 

Where 

��: Number of true positive examples. 

��: Number of false positive examples. 

 

 

Dataset 
Original 

dataset 

After data 

augmentation 

Training 

dataset 

(80%) 

Validation 

dataset 

(20%) 

Number of 

Images 
2000 5000 4000 1000 

Good 800 2000 1600 400 

Corrosion 700 1750 1400 350 

Brittle 

Fracture 
400 1000 800 200 

Mechanical 

Damage 
60 150 120 30 

Pitting 

Corrosion 
40 100 80 20 



 

 

 
 

It demonstrates that the YOLO v8 model's Precision 

(properly detected positive cases) reached a peak of 84%, 

indicating its effectiveness in accurate object identification 

across diverse classes (Good, Corrosion, Brittle Fracture, 

Mechanical Damage, and Pitting Corrosion). 

Fig.3. illustrates the Recall Confidence comparison curve 

between the three models Yolo v5, v8, and v10, where recall 

is a statistic that calculates the proportion of correctly 

detected positive cases (true positives) across all instances 

(true positives and false negatives). Recall, equation (2), is 

a metric that concludes the proportion of accurately 

identified positive cases (true positives) out of the entire 

cases (true positives and false negatives). 

Recall = 
��

��+��
  (2) 

Where 

��: Number of true positive examples. 

��: Number of false negative examples. 

 

The curve shows that the YOLO v8 model has a higher 

recall of 78.5 %. This means that the model was good at 

finding true positive cases. 

 

 
 

The relationship between mAP and the number of epochs 

required to equate the three models' overall detection 

performance is shown in Fig. 4.  

 

 

where the YOLO v8 model achieved a high mAP of 79 %. 

As a result, it is a good model that regularly produces correct 

detections of good or damage mechanism classes. The Mean 

Average Precision, equation (3), is a metric that quantifies 

how accurate the model operates in object detection tasks. 

��� =
∑ ���

���

�
   (3)                                                                                                              

 
Where 
N: Number of identified sample classes. 
P: Precision, R: Recall 
 

The performance of a trained machine learning model 

on the training dataset is referred to as training 

accuracy. Training Accuracy, equation (4), measure of 

how well the model is learning during the training 

process 

Training Accuracy =  
/012 �34565724

/3689 :8;<924
      (4) 

 

Fig.5. illustrates that the YOLO v8 model achieved the 

maximum training accuracy of 87%, while the YOLO v5 

and YOLO v10 models achieved 80% and 84% training 

accuracy, respectively. 

 
The confusion matrix visualizes the model's performance 

It reveals how many predicts are right (True Positives (Tp) 

and True Negatives (Tn)) and which are incorrect (False 

positives (Fp) and False negatives (Fn)). This helped to 

discover the model's strengths and limitations, allowing it to 

perform better, and demonstrating the outcomes of the 

applied confusion matrix of YOLO v8 model. This 

confusion matrix shows a good act in the Corrosion (0.88 

true positive rate), Good (0.84), and Brittle Fracture (0.82) 

classes, and a good performance in the Mechanical Damage 

(0.82), Pitting Corrosion (0.41) class, as shown in Fig.6. 

 

IV. TEST RESULTS 

The test dataset of Damage Identification Model 

(DIM) had never been viewed by the DIM. The dataset 

contained 640x640 pixel JPG photos. The output was 

divided into five classes: good, corrosion, brittle 

fracture, mechanical damage, or pitting corrosion. 

Each of the five classes contained 30 images. Pressure 

vessels with no damage at all were categorized as 

“Good”, On the other hand, those that had damage 

were tagged with the correct categories.  

This study examined the performance of three YOLO 

models, YOLO v5, v8, and v10 models, for real-time 

multiclass detection of internal damage mechanisms in 

oil and natural gas pressure vessels. The pre-trained 

weights for the models were evaluated to determine the 

most accurate and computationally efficient model for 

this application. YOLO v8 achieved a high detection 

Fig.2. Precision Curves 

Fig.3. Recall Curves 

Fig. 4. mAP Curves 

Fig.5. Training Accuracy Curves 



 

 

rate of 93.3%, with 140 images properly classified, and 

10 images from the test set remaining undiscovered. 

No conflict occurs when there are no misclassified 

photos, as shown in Table II. 

 

 
 
 TABLE II. EVALUATION OF OBJECT-DETECTING MODELS' PERFORMANCE 

 

V. CONCLUSION 

Artificial intelligence (AI) was utilized in this study to 

detect and identify internal damage of pressure vessel 

interior shells. This technology was developed to help oil 

and gas sector avoid the financial consequences of pressure 

vessel breakdowns. A YOLO v8-based deep learning model 

was presented in this work to determine if the internal shell 

of the pressure vessel is damaged or in good condition.. The 

second author obtained real pressure vessel images on-site 

at PETROBEL's Abu Madi gas field in Egypt. This data was 

organized into a dataset, which was then manually tagged to 

enable supervised learning. The dataset was divided into 

testing, validation, and training samples.  

A computer vision model was developed inside this 

framework. For damage Identification Model (DIM), this 

model focuses on detecting the precise type of damage that 

occurred on a pressure vessel. Leading to multi-class 

identification of internal damage, DIM is divided between 

"good" condition and four damage categories; corrosion, 

brittle fracture, mechanical damage, and pitting corrosion. 

During testing, the model is able to distinguish between 

scenarios when a single image has either good and damaged 

regions or two separate kinds of damage.  By using three 

different versions of YOLO v5, v8, and v10, DIM using 

YOLO v8 showed a remarkable 93.3% average 

detection accuracy. This study offers a useful research 

roadmap for pressure vessel damage detection using image 

processing in the future. 

 

VI. LIMITATION 

The developed model must be accurate and effective in real-

time object detection in order to be suitable for use in 

practical situations. However, the model may have 

limitations that negatively impact its accuracy and limit its 

ability to detect objects as expected such as: 

• Variations in lighting, angles, and backgrounds can have a 

substantial impact on model performance. 

• Many training datasets may be imbalanced in their depiction 

of distinct damage types. resulting in weak performance in 

identifying those particular damages. 

• If the threshold is too high, the model may overlook tiny 

damages, while an indication that is too low may result in 

false positives, complicating the assessment process. 

• Damage with complicated patterns or combinations, might 

cause the model to become confused.  

 

DATA AVAILABILITY 

The datasets obtained and/or analyzed during the current 

study are not publically available because [The data set 

contains photographs representing the intellectual property 

of the inspection sector, Petrobel company, Egypt. Public 

disclosure is likely to risk the privacy of inspections or 

inspected equipment.] However, they are available from the 

associated author upon reasonable request. 
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